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Note

In this Exercise polar-transcomplex numbers are written in parentheses as trans-
tuples of the form (r, θ), where r and θ are transreal numbers, and Cartesian
transcomplex-numbers are written in square brackets as trans-tuples of the form
[x, y], where x and y are transreal numbers.

1 Transcomplex sums

1.1 Here cos(θ) and sin(θ) are total functions. Because they are total, every
value of θ maps to some value(s) and because they are functions, they map
to one value. Multiplication is an operator, so every product of r with the
unique value of cos(θ) and sin(θ) is unique.

1.2 [∞, 1] 6= [∞, 2] but both tuples correspond to (∞, 0). To see this, observe
that the polar form of [∞, 1] has an angle, θ, given by tan θ = 1/∞ = 0,
whence θ = tan−1 0 = 0 and, similarly, [∞, 2] has tan θ = 2/∞ = 0,
whence θ = tan−1 0 = 0.

1.3 Here a = (2, 0) corresponds to a′ = [2, 0] and b = (2, π/4) corresponds to
b′ = [2 cos(π/4), 2 sin(π/4)] = [2/

√
2, 2/
√

2] = [
√

2,
√

2].

1.4 Now c′ = a′ + b′ = [2, 0] + [
√

2,
√

2] = [2 +
√

2, 0 +
√

2] = [2 +
√

2,
√

2].

1.5 Now c = (r, θ) has r =

√
{2 +

√
2}2 +

√
2
2

=

√
{22 + 4

√
2 +
√

2
2}+

√
2
2

=
√

4 + 4
√

2 + 2 + 2 =
√

8 + 4
√

2 ' 3.7. And it has tan θ =
√

2/(2+
√

2),
whence θ = tan−1(

√
2/(2 +

√
2)) = π/8.

1.6 We could use the transcomplex cylinder to compute the result, but it
is quicker to observe that the sum is the bisector (∞, 0.5) + (∞, 0.6) =
(∞, 0.55).

1.7 The sum is the bisector (∞, 0.5) + (∞,−0.5) = (∞, 0).
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1.8 We could use the transcomplex cylinder to compute the result, but it is
quicker to use the properties of nullity. Thus (Φ, 3) + (∞, 6) = (Φ, 0) +
(∞, 6) = (Φ, 0).

1.9 Similarly (2,∞) + (3, 4) = (2,Φ) + (3, 4) = (Φ, 0) + (3, 4) = (Φ, 0).

2 Transcomplex division

2.1 We are required to prove that the division formula, (r1, θ1) ÷ (r2, θ2) =
(r1/r2, θ1 − θ2), calculates infinity correctly if and only if the angle of
zero is zero. We begin by noting that infinity is given in its most general
transreal form as ∞ = k/0, where k is a strictly positive real number and
0 is real zero. We observe that the polar form of transreal ∞ is (∞, 0),
where the elements of the tuple are transreal numbers. And the polar form
of transreal k is (k, 0), where the elements of the tuple are real numbers.
Let transreal 0 have polar form (0, θ), where the elements of the tuple are
transreal numbers. Corresponding to transreal ∞ = k/0 we have polar
(∞, 0) = (k, 0) ÷ (0, θ) = (k/0, 0 − θ) = (∞,−θ). Hence −θ = 0, as
required. This proves that in transcomplex arithmetic, the angle of zero
is zero: 0 = (0, 0), where the left hand side is transreal zero and the
right hand side is transcomplex zero. By contrast, in complex arithmetic
it is only a convention that the angle of zero is zero, but in transcomplex
arithmetic it is a theorem. Henceforth we always reduce the angle of zero
to zero before operating on it.

2.2 Corresponding to transreal Φ = 0/0 we have polar (Φ, θ) = (0, 0)÷(0, 0) =
(0/0, 0 − 0) = (Φ, 0). Hence θ = 0, as required. Other angles of nullity
can occur, but this computation justifies the conventional zero angle of
nullity. Henceforth we always reduce nullity to conventional or standard
form before operating on it.

Take care! If a user or some calculation path gives us x = (0, θ), for any real
θ, then the proof in (2.2) requires us to write x = (0, 0) = 0. But if θ is strictly
transreal then x = Φ because of the equivalence (Φ, θ) = (r,Φ) = (r,−∞) =
(r,∞), for all transreal θ and r, including r = 0. In the case x = Φ we write
x = (Φ, 0), but the tuple (Φ, 0) is just the conventional one of many equivalent
tuples.
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